Jatropha to Biofuel

- Crop grows on marginal land but needs ample water supply
- Optimum yield 5x more fuel / acre / yr than corn
- Production: a) variable, depending on soil quality,
 - b) highly labor intensive,
 - c) depends on plant life,
 - d) multiple harvests per year
- Leaves & seeds highly toxic
- Requires tropical climate: suitable in climates of Myanmar, India, China, Philippines, etc.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE SEP 2010		2. REPORT TYPE N/A	3. DATES COVERED -					
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER					
Jatropha to Biofue	1		5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)		5d. PROJECT NUMBER						
		5e. TASK NUMBER						
					5f. WORK UNIT NUMBER			
	ZATION NAME(S) AND AE boratory Washington	8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)						
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited								
13. SUPPLEMENTARY NOTES See also ADA560467. Indo-US Science and Technology Round Table Meeting (4th Annual) - Power Energy and Cognitive Science Held in Bangalore, India on September 21-23, 2010. U.S. Government or Federal Purpose Rights License								
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT SAR	OF PAGES 29	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Challenges for DoD Fuel from Algae

for 50% additive (2.4 B gal / yr)

- •Need high solar flux, abundance of water, CO₂ and nutrients (N, P, etc.)
- Massive need for wetlands and ponds

2500 gallons "oil" / acre / year requires 1600 square miles

- Use of **coal fired power plants** to sustain production 233 coal power plants in south east US burn about 330 million tons of coal per year and produce about 860 million tons CO₂ per year 2500 gallons "oil" / acre / year requires 20 million tons CO₂ per year (high CO₂ transportation cost if not adjacent)
- Massive water requirements
 2500 gallons "oil" / acre / year requires 1 trillion gallons of water per year
 (~ 1 / 120 of the volume of water in Lake Erie)
- 1 % S in coal will acidify the water to pH from ~ 5 to 3 (killing algae harvest)
- Costs of fuel could (if the algae ponds and coal fired power plants are adjacent) be as low as \$ 2- 3 / gallon, excluding capital investment and SO₂ removal

Challenges for Navy Jet Fuel from Camelina (Montana project, excluding land cost) for 50% additive (~ .3 B gal / yr)

- •Relies on massive arable (non-food) land use.
- Camelina at <100 gallons per acre per year would require 3 million acres or 1 / 20 of <u>all</u> pasture land in Montana
- Fertilization (~100 x 10⁶ pounds per year) at a cost of \$100 M / yr
- Requires planting & harvesting cost at ~\$280 M / yr
- Processing costs to jet fuel ~ \$3 B / yr (\$ 10 / gal)
- Processing costs to bio diesel fuel ~ \$ 1 / gal
- Market demands dictate diesel and not just jet fuel production
- Crop rotation with dry land wheat is under study

Pasture Land: 53 % of MT Crop Land: 19 % of MT

Camelina for Navy 50 % Jet Fuel: 4 % of MT

Cyanobacteria: an incredible group of microbes

- Ethanol production in US / yr is4 B gal; 3 % of fuel consumption
- •~ 2 / 3 gal of oil used to produce 1 gal of ethanol

- Capture CO₂ and photons through photosynthesis (similar to plants and algae)
- Grow in fresh or saline water
- Fix nitrogen from atmosphere (eliminate nutrient additives)
- Produce sugars and polysaccharides
- Can easily be genetically modified for efficient production of sucrose, glucose, etc.
- Allow products to be extracted without harming the cells
- Are estimated to be able to produce
- > 700 gal of ethanol / acre / yr

Hydrogen: A Clean Energy Source

(From Oil To Hydrogen)

Massive R&D Challenges

Production Cost-effective hydrogen generators

Distribution Much lower cost; reliability

Fueling Standard fueling station and dispensing

systems

Storage High density storage; ease of

release

Conversion Hydrogen to electricity (fuel cells)

Detection Compact and accurate hydrogen sensors

(Typical leakage 1-3%)

Hydrogen has high energy content, and is non-polluting. Why has it not been widely used as a fuel?

Energy content of various fuels, referenced to gasoline.

Fuel	Energy /mass/ vo		gy Temp volur	o. Mass ne
Gasoline	1.0	1.0	25 C1.0	
Methanol	0.44	0.51	25 C1.1	
Ethanol	0.61	0.69	25 C1.1	
Liquid Hydr	ogen 2.60	0.27	-253 C	0.1
Hydrogen G	as 2.60	0.06	25 C0.02	
(@3,000 psi)			
Hydrogen G	as 2.60	0.20	25 C0.08	
(@ 10,000 p	si)			
Lithium Ion	Battery	0.019	0.035 25	C2.03

Other properties:

- wide limits of flammability
- low spark ignition energy
- nearly invisible flame

Storage:

- high pressure, or cryogenics (both have issues for the DoD, particularly combat situations)

Distribution:

- pipelines cost ~ \$1M/mile
- would need to be newly laid

NOTE: Hydrogen has lowest heating value/ unit vol, w exception of Li battery.

Coffey et al, Defense Horizons, No. 36, 2003

Production

Steam reforming of methane

 $CH_4 + 2H_2O + energy = 4H_2 + CO_2$

- To produce energy equivalent of oil consumed each year in the US, we would require $3x10^{14}$ gm of H₂ ($300x10^6$ tons); (from $6x10^{14}$ gms ($3x10^{13}$ ft³) of CH₄, $13.5x10^{14}$ gms of water with byproduct of $16.5x10^{14}$ gms of CO₂ (Current US use of CH₄ is 2.2×10^{13} ft³/yr)
- Burning CH₄ for equivalent energy, we need 25% less CH₄ and produce 25% less CO₂

Electrolysis: Use of electricity to produce H₂ from H₂O

- Need 3.9 kW hr of electrical energy to produce 1 m³ of H₂ with energy value of 3.2 kW hr (80% efficiency)
- 3.4x10¹² m³ of H₂ needed to replace US oil needs, requires 13.2x10¹² kW hr of electrical power (US annual electrical production is 3.7X10¹² kW hr)*

Energy from the Ocean

Variations in sea levels (twice daily) due to the gravitational effects of the sun and the moon turn immersed turbines

Advantages:

- Large scale investment (100 MW+)
- Proven technology
- Protection from coastal flooding

Disadvantages:

- Specific sites (40 world wide)
- Intermittent operation (4 flows/day)
- High capital investment (\$3-10K/kW)
- Environmental issues
- Navigation limits

Wave Energy

Rise and fall of waves moves cylinder which drives electric generator

Advantages:

- Single buoy (50 kW)
- Existing technology (tested at New Jersey by OPT)
- No environmental impact

Disadvantages:

- Coastal navigation
- High sea states
- Fisheries
- Capital investment

Synthetic fuel from the Sea

Synthetic Fuel Production

Objective:

Feasibility of producing sea-based synthesized hydrocarbon fuels

Benefits:

Synthetic Fuels: a "Game Changing" Proposition

- Total independence from impending global oil crisis (price fluctuation, availability)
- Reduce vulnerabilities and storage
- Synthetic Jet fuels superior to petroleum based fuels (reduced engine maintenance and reduced aviation fuel exhaust)
- Assured source of jet fuel
- Zero net pollution to environment (CO₂ neutral)

Fuel Where and When You Need It

Ocean Thermal: a renewable energy source

- Oceans are the largest solar energy collector on earth
- Stored energy in the equatorial / tropical oceans equals ~ 300 times the world's energy consumption
- •Energy conversion is 24 hours per day; not only when sun shines
- Energy extraction is environmentally neutral

Ocean Thermal Energy Conversion (OTEC)

- Efficient method to convert solar energy stored in tropical ocean waters to electricity
- 80°F surface water boils working fluid (propylene) under pressure; expanded vapor to turbines to produce electricity
- < 40°F cold water pumped from ~ 3000 ft to condense vapor back to liquid
- 100 MW plant needs 32 M gal water / day
- Power used to produce H₂ and CO₂; Fischer Tropsch process to produce JP-5, F-76

Synthetic Hydrocarbon Fuels

Approach: Synthesis of hydrocarbon fuels using CO₂ and H₂ and electricity

100 mg/L of $[CO_2]_T$ in seawater vs. 0.7 mg/L $[CO_2]_T$ in air

Down-select Technologies to Convert Carbon Dioxide & Sea Water to Aviation Fuel

Enhancement of Fuel Energy by High Energy Density Nanoparticulate Additives

An Intermediate Solution

- Provide greater enthalpy of fuels than currently available carbon based sources
- Develop highly energetic nanoparticles as additives to enhance energy density of diesel for gas turbine engines

Research Challenges

- Develop energetic nano-particle fuel additives for gas turbine engines.
- Enhance fuel combustion with catalysts.
- Surfactant coating for nanoparticle stability.
- Evaluation of combustion efficiency, acoustic signatures and coking
- Emission chemistry related to environmental and system impact

Non Renewables

Energy: Coal Production

Coal Production figures for year 2002 (x 10⁶ tons)

Rai	nk Country	Amount
#1	China	1,956
#2	United States	1,008
#3	India	403
#4	Australia	365
#5	Russia	280

Liquid Fuel From Coal

Basic Equations:

```
• 2CH (Coal) + 2H_2O \rightarrow 2CO + 3H_2 (1)

18CO + 27H_2 + 4O_2 \rightarrow C_{12}H_{26}(liquid fuel) + 14H_2O + 6CO_2 + Heat (2)

(Fischer - Tropsch process)
```

- 24 lbs of coal produces 1 gal of liquid fuel
- US annual consumption 7-9 B bbl of fuel/yr

```
8 B bbl x 42 gal/bbl = 3.4 \times 10^{11} gal of fuel x 24 lb of coal/gal = 4 \times 10^9 tons of coal
```

• US mines 10⁹ tons of coal/yr (~ 6% for export)

To meet national needs: 4 x annual coal production

- Issues: (1) disposal of solid waste from coal
 - (2) excess production of CO₂
 - (3) requires water

Energy Information Administration (2005)

Abundance of Frozen Clean Energy from the Sea

(Methane Hydrates)

Volume of Gas Hydrate

One cubic meter of gas hydrate yields 164 m³ of gas and 0.8 m³ of water at STP

World Methane Hydrate Distribution

Estimated Hydrate Concentrations

National/Regional Estimates of the Amount of Gas Within Hydrates

(cubic feet)

317,700 x 10¹² Collett 1995

Blake Ridge, USA

635 x 10¹² Dillon & others 1993

2471 x 10¹² Dickens & others 1997*

2844 x 10¹² Holbrook & others 1996*

2012 x 10¹² Collett 2000*

1331 x 10¹² Collett 2000

North Slope, Alaska

590 x 10¹² Collett 1997

Nankai Trough

1765 x 10¹² MITI/JNOC 1998

Andaman Sea, India

4307 x 10¹² ONGC 1997

Methane Hydrate Stability Diagram

Geoacoustic Profile

Studies of Gas Hydrates in Ocean Sediments

Seismic

Structure of sediments and phase boundaries (BSR) from seismic reflections

Geochemistry

Geochemical parameters (sulfates, sulfides, chlorine, water, hydrate history, etc.)

Electromagnetics

Resistivity fluctuation in sediments

Heat Flow

Temperature and thermal conductivity profile, effects of hydrate dissociation on fluid flux

Micro- and Macro-biology

Role of bacteria and microbes on creation and dissociation of hydrates

Drilling

Establish ground truth against other measurements

Methane and Seawater from the Sea to JP-5 and Potable Water

pressure

- 1) $CH_4 + H_2O \longrightarrow Clathrate$ (hydrate)
- 2) $13CH_4 + 13H_2O + Energy = 39H_2 + 13CO$
- 3) $39H_2 + 13CO = C_{13}H_{28}$ (JP-5) + $13H_2O + 12H_2 + Energy$

Energy for the 21st Century "The crisis facing our civilization would make the World War II years look like good times" Thank you

B. B. Rath rath@nrl.navy.mil